Caprine articular, meniscus and intervertebral disc cartilage: an integral analysis of collagen network and chondrocytes.
نویسندگان
چکیده
Cartilage is a tissue with only limited reparative capacities. A small part of its volume is composed of cells, the remaining part being the hydrated extracellular matrix (ECM) with collagens and proteoglycans as its main constituents. The functioning of cartilage depends heavily on its ECM. Although it is known that the various (fibro)cartilaginous tissues (articular cartilage, annulus fibrosus, nucleus pulposus, and meniscus) differ from one each other with respect to their molecular make-up, remarkable little quantitative information is available with respect to its biochemical constituents, such as collagen content, or the various posttranslational modifications of collagen. Furthermore, we have noticed that tissue-engineering strategies to replace cartilaginous tissues pay in general little attention to the biochemical differences of the tissues or the phenotypical differences of the (fibro)chondrocytes under consideration. The goal of this paper is therefore to provide quantitative biochemical data from these tissues as a reference for further studies. We have chosen the goat as the source of these tissues, as this animal is widely accepted as an animal model in orthopaedic studies, e.g. in the field of cartilage degeneration and tissue engineering. Furthermore, we provide data on mRNA levels (from genes encoding proteins/enzymes involved in the synthesis and degradation of the ECM) from (fibro)chondrocytes that are freshly isolated from these tissues and from the same (fibro)chondrocytes that are cultured for 18 days in alginate beads. Expression levels of genes involved in the cross-linking of collagen were different between cells isolated from various cartilaginous tissues. This opens the possibility to include more markers than the commonly used chondrogenic markers type II collagen and aggrecan for cartilage tissue-engineering applications.
منابع مشابه
Intervertebral Disc Apparent Torsional Modulus Is Elevated In Lubricin Knockout Mice
INTRODUCTION: Lubricin, also called superficial zone protein (SZP) or Proteoglycan 4 (PRG4), was first identified as the boundary lubricant in synovial fluid. In diarthrodial joints, lubricin is produced by superficial zone chondrocytes and synovial lining cells. It is present in the superficial layer of articular cartilage and coats the articular surface, decreasing surface friction. Lubricin ...
متن کاملDistribution of Basement Membrane Molecules, Laminin and Collagen Type IV, in Normal and Degenerated Cartilage Tissues
OBJECTIVE The objective of the present study was to investigate the presence and distribution of 2 basement membrane (BM) molecules, laminin and collagen type IV, in healthy and degenerative cartilage tissues. DESIGN Normal and degenerated tissues were obtained from goats and humans, including articular knee cartilage, the intervertebral disc, and meniscus. Normal tissue was also obtained fro...
متن کاملQuantitative Analysis of the Proliferation and Differentiation of Rat Articular Chondrocytes in Alginate 3D Culture
Background: While articular chondrocytes are among those appropriate candidates for cartilage regeneration, the cell dedifferentiation during monolayer culture has limited their application. Several investigations have indicated the usefulness of alginate, but the topic of proliferation and differentiation of chondrocytes in alginate culture has still remained controversial. Methods: Rat articu...
متن کاملCostal Versus Articular Chondrocytes in Alginate Three-Dimensional Cultures
Given the difficulties in accessing articular cartilage as a source of chondrocytes to be used in fabricating cartilage constructs, alternative sources are required. The present study examined chondrocytes from costal cartilage for their suitability in cartilage tissue engineering. Chondrocytes isolated from rat knee and rib hyaline cartilage were separately mixed with alginate and placed in a ...
متن کاملExpression of NGF, Trka and p75 in human cartilage.
Nerve growth factor (NGF) exerts its action through two types of receptor: high-affinity tyrosine kinase A receptor (trkA) and low-affinity p75 receptor. NGF has a neurotrophic role in central and peripheral nervous system development, but there is also clear evidence of its involvement in the developing skeleton. The aim of the present immunohistochemical study was to investigate the expressio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Matrix biology : journal of the International Society for Matrix Biology
دوره 29 3 شماره
صفحات -
تاریخ انتشار 2010